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The dynamics of a set of rods bouncing on a vertically vibrated plate is investigated using experiments,
simulations, and theoretical analysis. The experiments and simulations are performed within an annulus to
impose periodic boundary conditions. Rods tilted with respect to the vertical are observed to spontaneously
develop a horizontal velocity depending on the acceleration of the plate. For high plate acceleration, the rods
are observed to always move in the direction of tilt. However, the rods are also observed to move opposite to
direction of tilt for a small range of plate acceleration and rod tilt. A phase diagram of the observed motion is
presented as a function of plate acceleration and the tilt of the rods which is varied by changing the number of
rods inside the annulus. Next we introduce a molecular dynamics method to simulate the dynamics of the rods
using the dimensions and dissipation parameters from the experiments. We reproduce the observed horizontal
rod speeds as a function of rod tilt and plate acceleration in the simulations. By decreasing the friction between
the rods and the base plate to zero in the simulation, we identify the friction during the collision as the crucial
ingredient for occurrence of the horizontal motion. Guided by the data from the experiments and the simula-
tions, we construct a mechanical model for the dynamics of the rods in the limit of thin rods. The starting point
of the analysis is the collision of a single rod with an oscillating plate. Three friction regimes are identified:
slide, slip-stick, and slip reversal. A formula is derived for the observed horizontal velocity as a function of tilt
angle. Good agreement for the horizontal velocity as a function of rod tilt and plate acceleration is found
between experiments, simulations and theory.
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I. INTRODUCTION metric potential has been studied in a number of recent

Granular materials come in all shapes and sizes. IdealizefpPlications[S]. In Ref. [6], ratchet transport was demon-
spherical particles, have been typically used to unravel thatrated for spherical grains on a vertically vibrated asymmet-
fascinating properties displayed by granular materials. In vi!IC Saw-tooth profile. In Ref{7], the transport of elongated

brated granular systems, periodic pattern formation, clustegrains on a vertically vibrated ratchet-shaped plate has been

formation, and complex size separation have been observegiudied numerically. However, as follows from results of
4], and further described in this paper, the transport of

However, anisotropic grains are nearly as numerous, and ex=’. {roDi _ thout ext v i
perience with thermal systems teaches us that shape mattefd!/SOLrOPIC grains may occur even without externally 1m-

Only a handful of investigations have studied the impact of?0S€d Microscopic asymmetry of forcing, in which case the
rl]rectlon of motion is chosen as a result of spontaneous sym-

anisotropy on granular systems, but the ones that have be?n ;
accomplished point to a rich phenomenology. etry breaking. ; ;
. . : In this paper, we apply experimental and numerical tools

qu example, the(_)renca! and numerical study (?f a IOW'to a system of rods in a vibrated annular container to eluci-
density gas of hard inelastic needld§ shows two distinct e the development of coherent horizontal dynamics in an-
regimes of cooling related to the different scaling of rota-jsotropic systems. This geometry was specifically chosen to
tloqal and trqnslatlonal energy dls_S|pat|0n_. In compaction exsjmplify the phenomenology in order to focus on the mecha-
periments with granular rodg?] vibrated in a tall narrow pisms for the observed dynamics. Our theoretical model is
container were observed to form ordered stacks, i.e., a smegeveloped for even simpler quasi-two-dimensional geometry
tic phase similar to that found in thermal systems, with thewhere all rods are confined to a vertical plane, and periodic
additional novelty that the rods align with the gravitation boundary conditions are imposed. The theory is based on a
field. More recently, self-organization of vortices was ob-detailed description of frictional collisions between rods and
served to occur when a shallow bed of granular rods waghe vibrating plate which makes use of the assumption of
vibrated[3]. It was further shown that the tilt of the rod and constant kinematic restitution coefficient. While the issues of
vertical vibration was important to the occurrence of therestitution coefficient in application to frictional impact of
novel dynamics. While a phenomenological model of forma-asymmetric bodies are still debated in the literaiisee, for
tion and growth of the vortices has been propogéfd a example[8]), we show that even this simplest model agrees
detailed understanding of why the rods move horizontally orvery well with soft particle molecular dynamics simulations
a vertically vibrated plate was not reached. of individual collisions. To describe the collective motion of

The collective motion of vibrated anisotropic grains is of the rods, we take advantage of the observation that in the
considerable interest as an example of spontaneous ratcheggime of stationary translation the mean horizontal momen-
formation in a nonequilibrium dissipative system. Transporttum transfer due to the collision with bottom plate is zero,
of thermal patrticles in systems with microscopically asym-and assume that this condition holds for a typical collision.
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ur simulations show that during the flight the angular mo-
mentum of a single rod is transfered to other rods, so the
angular velocity of the rod at the end of the flight becomes
small and can be neglected. Furthermore, based on our nu-
merical simulations we make the assumption that the vertical
velocity of the center of magg.m) just before the collision
is equal to the c.m. velocity in the beginning of the flight.
These assumptions allow us to find the mean translation c.m.
velocity in a closed form. We show that this theory captures
the essential mechanisms of the transport of tilted rods on a
vibrating plate.

The paper is organized as follows. First, we introduce the 2,0
experimental system and report the observed dynamics as a
function of the control parameters such as plate acceleration
and tilt of rods. Next we discuss the molecular dynamics 15
simulations corresponding to experimental parameters and ' X
compare the results with the experimental data. Then using
the data as a guide, we construct a theoretical model for the
occurrence of spontaneous horizontal motion, and its depen-
dence on control parameters, and compare the results with
the data. Finally, we discuss the general implications of this W

study. 0.5 —

1.0

position (cm)

Il. EXPERIMENTS plate

. . . 0.0 -
The experimental system consists of an annular container 1 T T T 1 7

with an inner diameter of 7.28 cm and outer diameter of 9.45 000 004 008 o012

cm, and is similar to that used in R¢8]. An image is shown time ()

in Fig. l(a)._The sides are c_omposed of C'e?r ac_rylic and the FIG. 1. (8 Annular geometry used in the experimerits. The
base plate is made of aluminum. The container is attached tQ, i, ontal and vertical position of the rod end at the bottom as a
an electromagnetic shaker through a linear bearing whiclnction of time. The position of the oscillating bottom plate is also

allows only vertical motion. A frequency generator alongpiotted for reference. The three plots are shifted for claxty.
with a lock-in amplifier is used to excite the system with a=3 3 N=50, ¢=13°)

fixed frequency and amplitude. The data reported here for
frequencyf=60 Hz, and we note that qualitatively similar
behavior is observed when the frequency is varied betweehigh-speed Kodak digital camera with a frame rate of 1000
50 and 100 Hz. The acceleration of the container is measurgser second, and tracking the end of the rod with appropriate
with an accelerometer and is reported in termsl'ofthe  use of lighting through the transparent side walls. The verti-
measured peak acceleration divided by the acceleration dusal position of the tipz is observed to oscillate, as the rod
to gravity. The tilt to the rods is characterized by the anfjle bounces on the vibrating plafalso shown in the Fig.(b)].
with respect to the vertical axis. The flight time is observed to vary and although the rod
The rods used for the experiments are cylindrical with aappears to almost always hit the plate on its upstroke, a dis-
diameter of 0.635 cm and length 5.08 cm. One of the ends igibution of phases is observed. We will discuss this issue
semispherical with the radius equal to the radius of the rodfurther after introducing the molecular dynamics simulations
and the other end is flat. The rods are made of a Delrin anph a later section. On the other hand, the horizontal position
Teflon composite, and the measured dissipation coefficientsf the tip is observed to increase approximately linearly al-
are as follows. The coefficient of static and kinetic friction though some oscillatory motion is also seen to be super-
between the rod and the base plate is 0.36 and 0.25, respgmsed. The slope of theposition gives the average horizon-
tively. The coefficient of restitution is obtained by measuringtal velocity which is consistent with dividing the average
the kinetic energy of the rod just before and after a collisioncircumference of the annulus by the amount of time taken by
with a stationary base plate. For nearly normal incidencehe rods to go around once. This second method is used to
(¢<5°), the coefficient of restitution is approximately report observed average horizontal velocities. The data was
0.8+0.1(see alsd9].) When a single rod is placed inside the obtained by measuring the average speed while the rods go
annulus, the maximum tilt angle that it can have is 53° duearound once in the annulus. The data was measured 2-3
the curvature of the annulus. By increasing the total numbeminutes after the rods were reset and during which a constant
of rodsN in the annulus fronN=23 to 56, the tilt¢ can be vibration amplitude was maintained.
varied from 53° to 0°. The measured horizontal spegdas a function of the tilt
Figure Ib) shows the typical motion of the bottom tip of of the rods¢ for a fixedI'=3.3 is shown in Fig. @). c, is
a rod as a function of time. The data is obtained by using @bserved to increase from zero to a peak value and then
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from the actual measurement of the velocity itself. In this
case, seven separate realizations were used to arrive at the
average value of, for a particular number of rods.

By varyingI" for a few values ofg, we obtain its impact
on observed horizontal velocitigsee Fig. 2)]. Positive
horizontal velocity is observed to commence only above a
finite I'~1.6 is reached. Below' ~ 1.6, no net horizontal
velocity occurs except for a narrow parameter range where a
horizontal motion in a direction opposite to the tilt is ob-
served. As shown in the inset to Figc® this reverse hori-
zontal motion is observed to be two orders of magnitude

“p slower than the forward motion. Although reverse motion is

12 "9 0=d0deg ,xﬂ observed over a range @f, the data is plotted for this par-

o _‘Z_:j;::: ticular ¢, because it displays the fastest and most robust
= measurements of the horizontal speed in the reverse direc-

tion.

A phase diagram of the various kinds of observed motion
is shown in Fig. 2d) as a function ofl’ and ¢. Forward
motion indicates parameters for which horizontal motion oc-
curs in the direction of tilt, and reverse motion, indicates
7 when the motion is in the opposite direction. The reverse
motion is observed to occur only for a narrow range of pa-
rameters. The horizontal motion is predominately along the
direction of tilt provided a minimum acceleration for the
container is achieved.

To study the impact of the shape of the rod tip, we also
performed experiments by flipping the rods so that the flat
end is at the bottom. Figurg@ compares the measured
as a function ofl” for rods with rounded and flat ends but
otherwise under identical conditions. When the flat end in-
20 teracts with the bottom plate, the observed horizontal veloci-
ties are lower, the minimum rod tilt required to obtain hori-
zontal motion is 8°, but otherwise the qualitative phenomena
d remains the same.

cem )

¢ (ems™)
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We performed a series of numerical simulations of the
bouncing rods on a vibrated plate. The rods are modeled as
spherocylinders of diametel lengthl, massm, and moment
of inertial. A rod has three translational and two rotational
degrees of freedom, the rotation of a rod around its own axis
is neglected. Our numerical algorithm is based on the “soft
spheres” molecular dynamics technidd®]. The interaction

forces between colliding spherocylinders are calculated via
: . . } the interaction between viscoelastic virtual spheres of diam-
function of tilt angle. (b) ¢, versusl” for three different tilt angles. eter d centered at the closest points between the axes of

(c) The effect of rod end shape on measuogdA flat end rod is h lind that th lind . tact wh
observed to move slowly compared to a rod with a round engSPNErocylinders, so that the cylinders are in contact wnen-

Horizontal motion in a direction opposite to the tilt is observed overSVer virtual spheres afa1]. Th? normal forces between vir-

a small range of lowr. ($=28°+2°) Inset:c, measured between tual _sphe_re_s are computed using Hertzian model and the tan-
'=1 and 2 is replotted to clarify the small magnitude of the reversed€ntial frictional forces are computed by the Cundall-Strack
motion. (d) A phase diagram denoting the kinds of horizontal ve- &lgorithm. They lead to the kinematic restitution coefficient
locity observed relative to the direction of the tilt. The rods areOf about 0.65-0.7 slightly varying with impact angle. In most

observed to move in the direction of the tilt under most conditions Cases we Psed equal friction Coefficiem'$=urb=urw=0-$
for all sliding surfaces(rod-rod, rod-bottom and rod-side

decrease. The rods are observed to always move in the samall) and ignored the difference between dynamic and static
horizontal direction as the tilt. It is to be noted that the errorfriction coefficients while comparing to experiments. The
in determiningc, arises from run to run variability due to forces arising from the interaction of virtual spheres are then
slight differences in packing inside the annulus rather tharmpplied to the rodgsee Appendix A for detai)s Collisions

FIG. 2. (a) The average horizontal velocity, of the rods as a
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FIG. 3. Two types of geometry used in simulatiote: annulus

geometry;(b) quasi-2D geometry with periodic boundary condi-
tions alongx where the motion of rods is constrained to the
plane.

between rods and walls of the container are handled in a
similar fashion. For example, when rod collides with the
bottom a virtual sphere at the end of rod is interacting with a
virtual sphere of infinite radius which has velocity of the
bottom. The motion of rods was obtained by integrating the
Newton’s equations with the forces and torques produced by
interactions of a rod with all the neighboring rods, walls of
the container, and by gravity.

Figure 3 illustrates two configurations employed in nu-
merical simulations. An annular geometflfig. 3@)] was
used to match closely the experimental setup. However, to
separate the effects of side wall friction and oblique colli-
sions among the rods due to annulus curvature, we also stud-
ied the quasi-2D geometry of Fig(l8 in which axes of all
rods are constrained to thez plane. This geometry is more
amenable to the theoretical analysis and was used for com-
parison with our theoretical predictions.

In simulations we observed robust drift of the rods in the
direction of inclination in agreement with experimenis].
Figure 4a) shows the average translation velocity as a func-
tion of the average inclination angle for the annulus geom-
etry and parameter§=60 Hz andI'=3.3 used in experi-
ments. The results shown in this figure are obtained from 12 4 18
eight independent runs. In every run evenly distributed rods 10 |
were dropped into the vibrating annulus. After a short tran-
sient rods tilted in one or other direction due to domino-like
effect. Simulation continued until average tilt of the rods and
average translation velocity reached stationary values.

The translation velocity grows linearly for smaip,
reaches maximum a$~18° and also for¢p=~35° after
which it decays to zero at largé. For intermediate incli- : : :
nations, 18%< ¢<35°, in most cases we observed notice- 0 05 pn: 15 2
able slowdown which however is not typically observed in
experiment. We will discuss the source of this discrepancy FIG. 4. The results of simulations in the annular geome(@y:
below. average translational velocity of rods as a function of average tilt at

Figure 4b) shows the dependence of the average translaf=60Hz,I'=3.3; (b) idemas a function ofl" for a number of tilt
tional velocity of rods on the acceleration of the container a@ngles;(c) idemand average tiltinsey as a function of the coeffi-
fixed frequency for a number of inclinations. As in experi- cient of friction between the rods and the wallls, = u,=0.3); (d)
ments the motion starts above(slightly lowen threshold iqem and average tiltinsed as a function of the coeﬁicient. of
I'>1.5. Abovel ~ 2.0 this velocity grows roughly linearly friction between the rods and the bottda, = un,=0.3). Insets in
with the acceleration. We explain the presence of the thresiane!s(@ and(d) show the dependences of the average tilt aggle
old by the friction with side walls. Indeed, in the numerical ©" corresponding friction coefficients.
experiments in quasi-2D geometry there is no threshold and
c,<I'=1 right down tol'=1.0. Figure 4c) depicts explicitly
how the average translational velocity and average tilt deis more than tenfold difference in velocities for large and
pend on the coefficient of friction with the sidewal},,, for ~ small u,, which probably explains systematically slower
a fixed number of rods. As one could expect this dependendganslational velocities in simulations and underlines an im-
shows monotonic decay when,, is increased; less expected portance of the proper account of friction with walls.

e (cms™)

¢ (ems™)

O (deg)
o

0 05 1 15 2

o ems™)

o N O~ O
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Next, to eliminate the effects of the curved side walls and isla ' ' ‘@ o |
out-of-plane rod-rod collisions, we simulated the collective @ =
rod motion in a quasi-2D geometry with periodic boundary ~10r ]
conditions along the direction of the rod tfig. 3b)]. All e s} B 1
rods are confined strictly to thez plane, and the interaction ol aﬁ/—iwi%% ]
with side walls was ignored, while friction with the vibrating Goease
bottom plate and among the rods was taken into account. We 0 10 20 80 40 50
used a fixed number of roddl=40) and varied the length of
the container, thereby changing the tilt angle[see Fig.

3(c)]. The relation between the length and the tilt is well

described by a simple formula cds=dN/L, however a T
weak dependence of the mean tilt angle on other control 5
parameters is also observise, e.g., insets to Figs.cjand 51
4(d)). L

Figures %a)—5(c) shows the mean values of rod velocities 0 10 20 30 40 50
before and after impacts. As seen from Figp)5the angular
velocity before the collision is rather smathpparently, it
decays after inelastic collisions with other rods during flight
Figures %b) and c) shows the horizontal and vertical cen- T
ter of mass(c.m, velocities of rods just before and after 5
collision in the laboratory frame as a function #f As seen 51
from these plots, the pre- and post-collisional velocities are ) ) ) )
close to each other. The mean velocity of the plate at the 0 10 20 30 40 50
moment of collision is shown in Fig.(8). The velocity is _ _ , ,
only weakly dependent orp and is close toVy/2 (Vg 15| d Vy = |
=I'g/2xf is the amplitude of the plate velocjtyin Fig. 5a) =
one can also see a noticeable variation of the horizontal €
translation velocity neag=30° which however is not ac- =
companied by a sharp drop ét=20° observed in 3D geom-
etry. As an example illustrating the statistics of individual
collisions on Fig. fe) we plot distributions of the horizontal
c.m. velocities before and after collisions with the bottom.
The distributions were obtained from the statistics of all col-
lisions of all rods(about 900 collisions per rodNote that
the distributions are plotted for the value of tift=15° at
which the mismatch between the two distributions is the
largest, for¢p>20° they virtually coincide.

We conclude that there are two different mechanisms
which independently contribute to the slowdown of rods at ems™
g]rfle)/rrggglrztti‘sv?r:uiae[s) gfeg:;:trr])? lii. rzra?[ezrig %iczgglr?trgntehoal}s FIG. 5. The mean c_.m._velpcmes of r(_)ds befqre and afte_r colli-

' . ; . slon as a function of inclination anglé in quasi-2D numerical
formation O.f the no_nunl_forr_nlty_ of rod arrangement IN-an gimulations. The parameters dre9.5d, I'=3.3, andx=0.3. For
annulus at intermediate inclination angles. For small tilt, the

. ; . . comparison with experiments the velocities are plotted in dimen-
rods are arranged in a uniform hexagonal-like packiee sional units for experimental values @£0.6 cm andf =60 Hz:(a)

Fig. 6 with one rod near the inner wall of the gap, next nearangyjar velocitiess andw’; (b) horizontal c.m. velocities, andc;

the outer wall and so on. This “perfect” arrangement may bgc,) vertical c.m. velocities e, andc,; (d) the mean plate velocity at
perturbed by the presence of one or few one-rod defects duge time of collision;(e) distributions ofc, andc, for ¢=15°.

to geometrical frustration, however their cumulative effect is

quite small and does not change the collective motion con- The second mechanism operates both in 2D and 3D, and
siderably. At¢~18° in most of the numerical experiments, it has to do with the bifurcation between long flights span-
the hexagonal packing spontaneously breaks and as a resulhimg more than one period of vibrations at small tilt angles
localized region with much larger tilt emerges. At=25° it  and short flights which last one period of vibration at large
involves roughly half of the rodgFig. 6(b)]. Eventually, this tilt angles(see Fig. 7 where the tip trajectories are shown for
region spans the whelperimeter and the dependencgdg) two different tilt angles corresponding to the two regimes
becomes smooth again. This tilt nonuniformity appears tdrhis transition occurs a$=30° and it leads to the notice-
play a significant role in slowing down the rods drift. This able difference in the distribution of the landing times over
effect is exacerbated in numerical simulations by neglectinghe phase of the plate vibrations for different tilt angisse
the rod rotation around its axis. Therefore, rolling of rodsFig. 8). At large angles the landing times are mostly confined
along the side walls is prohibited by the numerical modelto the phase interval in which the plate moves upward,
and thus the sidewall friction is effectively enhanced. whereas at smaller tilt angles there is a significant probability
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FIG. 8. Distribution of collision times of rods over the phases of
the plate vibration for different values of the tilt angle Solid line:
approximationH(6) =(1+cosé)/ 2w used for the theoretical analy-
sis, whered is the phase of the plate velocity, =V, cosé. Param-
eters are the same as in Fig. 5.

that, to a first approximation, the pre- and post-collision cen-
ter of mass translation speeds are close to each other and that
the angular velocity before the collision can be neglected.

IV. ROD COLLISION WITH PLATE

FIG. 6. The results of simulations in the annular geometry illus-. Ilnttf(;ls Sﬁ.Ct.lon \t/)vetv\(jerlve thedneczssary f(t)_rmlllJIas for_ an
trating formation of the nonuniformity in the fdr=60 Hz andI’ |s|oa ed co Isfl.on he ee? g ro han a V?r. ICaIy moving
=3.3. Shown argnormalized horizontal projections of the rods’ p.ate. We conhine t € analysis to the case ol in-plane, eccen-
directors for two numbers of rodga) N=55 and(b) N=44: the tric, oblique frictional impact. Our derivation is based on the
mean tilts arep~9° and ¢~ 22°, respectively. classical analysis which assumes the constant kinematic res-
titution coefficient(see Ref[8]).
of collisions during the downward motion of the plate . Co.n5|der uniform r_|g|d rod of.masn and length collid-
(m/2< 6<3m/2). where 6=mod2aft,2m). This bifurca- ing with a plate at poin© (see Fig. 9. We place the system
. . ' : o of coordinates at poinD so that the common normal co-
tion explains the bump n the dependence of_the mean Vertl, vijes with the or and the axis of rod, prescribed by unit
() and corresponcingly the horizontal ransiation veloci-"eCtOr U 1 in thex-z plane.u={(sin¢), 0, cos$). Prior o
t'( )] , th Ft)'lt ?y Fi the collision, the rod has translational velociigssociated
1€S Cy, G, On the tiit ang efsee Fig. f)]. . with the center of mas§) c=(c,,0,c,), and angular velocity

Overall, our simulations show that the side walls do play -0 0), and the plate has only vertical velocity
an important role in determining the magnitude of the hori—‘_"_ AR plate y Ve ..
zontal velocity of rods. As seen from comparison of Figs. 4_(0’0’\/2)' The correspondmg post-collisional velocities of
and 5, the transport velocity in quasi-2D case is 2.5 timeé:ool\lare de,noted b)(/j rl)nme_s. . ¢ lational and
greater than in the annulus for the same values of parameters. ewton's second law gives equations for translational an
On the other hand, they allow us to develop a theoreticaTOtat'O”al motion of the rod. In differential form they read

model of the collective rod motion based on the observations mdc=dP, (1)

I
Idw=—5u X dP, (2)

Z [mm]

wherel is the moment of inertia of a rod for its rotational
motion around the center of ma& dP=Fdt is the differ-

Z [mm]

5.1 5.15 5.2 5.25 5.3
time [s]

FIG. 7. Typical trajectories of the tip of a rod in numerical
simulations for two different tilt angleg=9° (a) and 34°(b); other
parameters are the same as in Fig. 5. Dashed blue lines indicate the
position of the bottom plat&y. FIG. 9. Geometry of the collision between rod and sphere.
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ential of the impulseP exerted on the rod during the colli- , (1 +ek?(c,— V,+ wX)

sion. €= K+X2+uXZ (13
The impulse acquired by the rod is the integral of the

reaction force over the time of collision. The reaction force Using Eqg.(8) the no-stop sliding conditiort7) can be

depends on the relative velocity at the contact p¢G#), written as
o XZ+ u(k?+22)
V—C—EwXU—V. (3) U*Euo+mvo(l+é)>0. (14)
The Newton's law for the velocity of the contact point If the condition(14) is violated, at a certain timg during
(CP) reads collision the sliding stopsu(t;)=0. At t=t;, the horizontal
dv mi2 CP velocityu; =0 and the vertical CP velocity is
—=F+—[F-u(F- 4
Mt g LFuF-wl @ K2+ X2+ uXZ
_ o vi=vgt muo. (15
or, in projections, m( )
. XZ K2+ 72 At t>t, the contact may remain at rest or reverse the direc-
mu= - FFZ"' 2 Fu (5  tion of sliding.
Slip-stick If
. K+X2_ Xz k?+2Z%) > XZ 1
e FeEte ®) € 2 = X2 (16
the contact sticks, and the horizontal velocitft; <t<t;)
whereX, Z are coordinates of the center of ma@ssn) of the ~ =0. During this phase,
rod, andk=(1/m)*? is the radius of gyration of the rod. In X7
writing Eq. (4) we assumed that the time of collision is so Fy= WFZ' (17)

short that we can neglect the changes in the plate position

and velocity. Depending on initial conditions, the impact pro- assuming again the kinematic restitution law=—ev,, we

ceeds according to one of three different scenarios. derive the expression for the c.m. velocity at the end of the
Slide Let us denote the duration of the contdgtso  collision (see Appendix B

F,(0<t<t;)>0, F(0)=F,(t;)=0. We assume that dt0,

u(0)=u,>0 andv(0)=vy<O0. After initial contact, the rod o = (c= wZ)Z% = (c,~ V, + wX)(1 + ) XZ roZ, (18)
slides along the plate, $6,=—uF, (for brevity we dropped X K2+ X2 + 72 ’
the subscriptb of the friction coefficient If
- XZ+ u(k2+22) o= (c,— V,+ wX)[X2 = (K2 + Z%)€] - (cy — wZ)XZ
Us = Ug — sz(tf) >0 (7) z k2 + X2 + ZZ
+V,— wX. (19

[herePZ(t)zf})Fz(t)dt] the slip in positive direction continues
throughout the contact, andi= u(t;)=u.. While the total Note that for the case of slip-stick, the post-collisional ve-
impulse P,(t;) is not knowna priori, it can be determined locities are independent of the friction coefficient.

from the kinematic conditioms=-evy assuming that Eq.7) Slip reversal If
is satisfied. Then integrating E6) fror:zt:O tot; we get w2+ 72 < X2, (20)
m

P,(t;)) == vo(l+e) (80  the contact slides back after stopping. In this phé&se

2 2
K+ X"+ uXZ =uF,. Again omitting the details of derivatioisee Appendix
and correspondingly B) we give here the formulas for the c.m. velocity at the end
5 of collision:
P(ty) = o(1+ 6K 9 2k + X?)
x\H) = Vo 2 2 : +
k= + X+ uXZ ¢l =y~ (- w2) e

" K2+ 72) + X2) (K2 + X2 = uXZ
Now we can calculate the c.m. velocities after the contact (u( ) 2 KXZ)

i K31+
Heing (e VX AL (21)
Cy = Cx+ Py(tr)/m, (10) k®+ X - uXzZ
2
C, =C,+ Py(t;)/m. (11 ¢ =¢,— (c, - w2) 2ukXZ
. k?+Z%) + X2)(K? + X2 - uXZ
Replacinguy=c,—wZ andvy=c,~V,+wX we get the center (ul )+ X2 wX2)
of mass(c.m., velocities immediately after the collision (6, =V, + wX) K(1+e) (22)
f—e b (1 +ek*(c, =V, + wX) (12) © k?+ X2 - uXZ
=& K2+ X2+ uXZ ' Thin rod For a thin rod of length, we use valueX
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FIG. 10. Bifurcation diagrams of single rod collision with a
plate for e=0.8, =0, and three different values ¢¥,-c,)/c,: 1
(), 2 (b), and 10(c).

=Ising/2, Z=l cos¢/2 k=1/23, I=mlI?/12. Let us first
outline the boundaries of three different reginfesntinuous
slide, slip=stick, and slip reversan the (¢, w) parameter
plane. While the bifurcation line indicating the transition
from slip-stick to slip reversal is universal, the condition of
continuous slidg14) additionally depends on the valuesef
and two non-dimensional ratig¥,—c,)/c, andwl/c,. Figure
10 shows the bifurcation diagram fer=0.8 and three differ-
ent values ofV,—-c,)/c, for =0. In vibrating plate experi-
ments,w is small, and the rati¢V,-c,)/c, is large(the trans-
lation velocity is small compared witl,), so the regime of
sliding can only be observed for small< u.=-c4c,(1
+¢€)]™t and either large or smad. For largeru > u., at small

PHYSICAL REVIEW E70, 051312(2004)

transition from slip-stick to slip reversal occurs, is deter-
mined from equation for ¢dJ3 sin¢, cosd.=u(l
+3 cos¢?)]. Solving this equation, we obtain

1 V9 — 16u? - 5u?
——arccos—————5——. 23
b > 30+ (23

For small u, ¢C=§,u+0(,u3). Note that the critical angle is
only dependent on the friction coefficiept and becomes
w2 at u=3/5. At largeru, the slip-reversal scenario does
not occur at any tilt angle.

V. COLLECTIVE MOTION OF RODS

In order to analyze the collective motion of bouncing rods
using the results for an individual rod collision obtained in
the previous section, we have to make additional assump-
tions regarding the interactions of rods. In the formulation of
these assumptions, we use the numerical and experimental
observations. Referring to Fig. 5, we assume that in the sta-
tionary translation regimep=0, c,=c,, c,=—c,. Note that
the latter simple assumption is not very accurate for ldige
and small ¢, however using it still leads to a reasonable
agreement between the theory and simulations. A more ac-
curate set of closure conditions would require a detailed de-
scription of the complicated interactions of the rod during the
flight between two consecutive collisions.

Adopting these simplifications, we immediately arrive to
the relations for the horizontal and vertical velocities of the
rods. Note that among the three cases outlined above, the
sliding regime cannot be realized in the regime of stationary
translation, since it would imply a continuous decayfSo
eventually one of the two other regimes will be established
depending on the inclination angla a finite container, the
dynamically selected inclination angle is weakly dependent
on the driving acceleration, see inset in Fig(t)3

Slip-stick Assumingc;=c,, ¢,=-C, and o=0, we get
from Eqgs.(18) and(19) in the slip-stick regimd ¢ < ¢.)

. 2(1L+eX2ZV,
=——2Z 24
™ K3(1 - e) + 2X? (24)
. (1+ekdy,
== 25
721+ 20 25
For a thin rod, Eq(24) yields
6(1 + e)si
- ( e)sm¢cos¢v (26)

1-e+6sit¢ =

Slip reversal In the slip-reversal regimé¢> ¢.), we
solve Egs(21) and(22) with constraintsc,=c;, ¢,=-C,, @
=0. As a result, we get

¢ the slip-stick regime occurs, and at larger angles there is o= (1 +u(k® +Z2)V, + (1 + X2V, 27

the slip reversal regime. The critical angfge at which the

X k(1 -e) +2X° ’
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04— 08 ———
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FIG. 12. Postcollisional c.m. velocities andc, as a function of

100 tilt angle for ©x=0.4 and <€,/c,=2. Symbols indicate the results of
numerical simulations, and lines show theoretical predictions for
different collision scenarios using constant coefficient of restitution,

FIG. 11. Normalized vertical velocity after collision,/V,  ¢=0.65. Solid lines denote slip-stick, dash lines denote continuous
(green dot dashed lipeand the translation velocity,/V, (black  gjin and dash-dot lines denote slip-reversal.

solid line) as a function of the inclination angle fex=0.65 andw
=0.3. Red dashed shows the unphysical branches of the slip-stick

and slip reversal dependenci@s) and(21) for the horizontal post- V.=V (277)_1 2m Cos(1 + cost)dh = Vy2 31
collisional velocity. z= Vo 0 .

(1+ ek2V. At small 0<I'-1<1, the distribution deviates signifi-
= (28)  cantly from H(6). The rods only leave the plate for short
k(1-e) +2X flights near the top position of the plate at which the vertical
. _ o acceleration is smaller tharg;-and the vertical velocity is
Note that the vertical velocitg, is again independent gi (556 o zero. Due to inelasticity, after landing the rod may
and in fa.c'F c0|nc!des with E,C(ZS_)' It is easy to see that N perform a few more smaller bounces before coming to rest
the transition point from slip-stick to slip reversal regime | the next period. While it is difficult to describe this
whereXZ=u(k?+Z7?) the values of the horizontal translation regime analytically, one can expect thgt<T'—1 at smalll.
speed24) and(27) coincide. This scaling can be obtained by assuming that the landing
For a thin rod case, we obtain from EQ7) times are uniformly distributed during the small part of the
vibration period during which the plate acceleration is less

V,. (29 than -g.

I —

, _(1+e[u(1+3cod ¢)+3sing cose]
X" 1-€e+6sif ¢

The vertical velocity after collision is given by VI. DISCUSSION

In this section we compare the theoretical results with
- LV (30) numerical simulations for the quasi-2D case. First, we tested
l-€e+6sit¢ ° the theoretical predictions for an isolated rod bouncing off
the plate. In quasi-2D geometry we dropped a single rod with
in both slip-stick and slip reversal regimes. Figure 11 showsy prescribed translational velocity of the center of mass and
the dependence of the normalized vertical velocity and thevith zero rotational velocity on a motionless plate for a
translation speed,/V,,c;/V, on the inclination anglep for  range of tilts [0, 90]. The resulting post-collisional ve-
the casew=0. The transition from slip-stick to slip reversal |ocities are depicted in Fig. 12. The same figure shows tabu-
dependence occurs gt. lated analytical formulagl2), (13), (18), (19), (21), and(22)

The remaining question is, what ¥,? ObviouslyV, is  with e=0.65,=0.4 and €,/c,=2. The quality of the agree-
smaller than the amplitude/, of the plate velocityV — ment for different impact velocities was approximately the
=V, cog27ft), because the rods collide with the plate at dif- same. One can clearly see the transitions between three dif-
ferent phases and not only at phase 0 whierV,. A simple  ferent regimes of rods bouncing: slide, slip-stick, and slip
assumption which we are going to make is thigt aVo with  reversal. A slight difference between the theory and simula-
a constant fitting parameter<<1. In fact our numerical tions in the vertical velocity at small tilt angles is related to
simulations indicate thak is close to 0.5 but varies slightly the above-mentioned variations of the kinematic restitution
with ¢ because the landing phase distribution dependsg on coefficient with tilt angle in soft-particle MD simulations
(see Fig. 8, but for the sake of simplicity we shall ignore which was ignored in an analytical calculations.
this dependence. The valae=0.5 is obtained if we approxi- A comparison between the theory and MD simulations for
mate the distribution of collision phases @4(6)=(1  the mean translation velocity is shown in Fig. 13. Fig(a3
+cos6)/2m, whered is the phase of the plate velocityy, shows the horizontal translation velocity as a function of the
=V, cosh. Then we obtain for the average plate speed atnean tilt angle. The overall dependence is in reasonable
collision, agreement with the theory; however, some noticeable differ-

!
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the rod length dependence of the horizontal translation ve-
locity. According to the theory for thin rods, should be
independent of. On the other hand, the drift should disap-
pear when the aspect ratio of the rod approachéhel case

of spherical particles As seen in Fig. 1&), the translation
velocity grows linearly at small> 1, but this growth satu-
rates atl =3 after which the translation velocity is indepen-
dent ofl in agreement with the theory.

There are several possible sources of discrepancies be-
tween the theory and numeri¢and experimenys First, in
describing individual collisions we made an implicit assump-
35 : . : . : tion that the collision time is small as compared with the
' | period of oscillations. This assumption may break for high
M frequency vibrations or in the regime of sméllwhen rods

. spend a significant portion of the period in contact with the
20 1 3 r 5 7 plate. Furthermore, we used the simplest closure assumptions
15k ] to relate the horizontal and vertical velocities of rods after
and before the flight. While the relatioy=c, appears to
work well throughout the range of parameters corresponding
to experimental conditions, the other conditiyF —c,, holds
0 : : ‘ : ; only approximately. Our numerical experiments showed a

r significant(up to 50% deviations from this simple relation
at largeI’, when many inelastic collisions occur during the

16 ' ' ' ' 16 flight. We were unable to describe this effect theoretically,
u“r e and chose to sacrifice the accuracy of comparison rather than
12 - 12 introduce an unknown fitting parametec,tc,.

? Comparison between 2D and 3D simulatighgys. 4 and
8 g 13) shows that the characteristic translation velocity in 3D

8
61 ey case is 2.5 times smaller than in 2D case with the same
4r —— 4 material parameters. This difference may be accounted for by
2 -

0 . . . . .

8
% Pl
o

¢, (ems™)

the frictional interaction with side walls. We systematically

0 studied the dependence of the translation velocity in the an-
nulus on the friction coefficient,,, between the rods and the
side walls, and found that indeed it vaires strongly witly,

FIG. 13. Results of simulations in quasi-2D geomedi40  in particular, the translation velocity at,,=0.3 is 2.5 times
rods are placed in a periodic domain of different lendthwhich ~ smaller thanc, at u,,=0 [Fig. 13b)].We also analyzed the
determine the tilt angleb,. (a) Average horizontal velocity of rods dependence of the translation velocity on the friction coeffi-
as a function of the inclination angle fér=3.3; solid line: theory  cjent with the bottom, and found that for largg, the trans-
(24), (29), and (31) with €=0.65, u=0.3; (b) average horizontal |ation velocity becomes independent @f,. This is consis-
velocity of rods and average tilinsey as a functionl” for L=43;  tent with the theoretical argument that at laygg the slip-

(c) average horizontal velocity of rods and average tilt as a functionstick scenario occurs for an arbitrary tilt angle

of the length of rod$=hy+1, whereh, is the distance between the As a conclusion, we studied experimentally and theoreti-
centers of spherical capbl=40 rods are placed in a periodic do- cally the drift of anisotropic particlegrods on a vibrated
main of lengthL =41.4[12], the bottom is oscillating at frequency y\aie The experiments in the annulus showed the robust drift
f=60 Hz and acceleration i=2.5. of rods in the direction of their tilt, at the normalized vertical

ences are obvious. This should not be surprising, given thacceleratiol”>1.5. For smaller values of4I'<1.5, very
crude assumptions made to describe the dynamics of rodgnall reversedrift was observed. We developed a numerical
during flights between collisions. As mentioned above, thealgorithm which allowed us to study the interaction of rods
“bump” visible at¢=30° is related to a transition from the in soft-particle MD simulations. Simulations of rods in an
regime of “long” flights that span more than one period ofannulus with parameter closely matched experiment, re-
vibrations, to the “short” flights that last a fraction of the vealed very similar behavior, both qualitatively and quanti-
period of vibrations. As seen in Fig. 8, these two regimes ar¢atively.
characterized by significantly different distributions of the  Our theoretical description of the rod translation is based
collision times over the vibration phases. on the detailed analysis of frictional collisions between an
Figure 13b) shows thel' dependence of the horizontal individual rod and the moving plate. The effects of collective
translation velocity. As expected from the theory, and seen iinteraction of rods during flights between collisions are taken
experiments, the horizontal translation velocity is linearlyinto account using the simplest phenomenological closure
proportional toI" at largeI’. Unlike the annular case, the conditions based on the experimental findings and MD simu-
translation velocity turns zero &t=1, and indeed it grows as lations. As a result, closed formulas for the horizontal trans-
I'-1 at smalll'-1. Figure 18c) addresses the question of lation velocity are obtained. A direct comparison between the

0 1 2 3 4 5 6
I (cm)
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theory and experiments is complicated by the role of interexpect our algorithm to capture details sfiort-termcolli-
action of rods with frictional side walls which is unaccounted sion with plate. However, for a long-term collision it may not
for in the theory. However, we found a reasonable agreemelite accurate.

between the theory and numerics for quasi-2D geometry
when rods are confined to thez plane with periodic inx
boundary conditions. Since the same numerical code de-
scribes well the experiment in the annulus geometry, we infer
that the theory correctly captures the mechanism of the rod Slip-stick The stopping conditiom(t;)=0 gives the total

APPENDIX B: DERIVATION OF REFLECTION
COEFFICIENTS

translation in experiment. vertical impulse exerted by a plate on a rod fox D<t;
Some more subtle effects, however, are difficult to model

theoretically. Thevery slow reverse drift of rods for small P.(t) = U mi (B1)

I' is presumably due to the small negative value of average 2= O,u(k2+ 7% +XZ

V,, however to calculate the meaf) one needs a detailed
knowledge of the distribution of landing times for small and correspondingly

which is difficult to obtain theoretically.
P, (ty)=-u muk’

x\t1) =~ Yo 2 2 .
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APPENDIX A: MOLECULAR DYNAMICS ALGORITHM Assuming the kinematic restitution lawt=-evq and using

In our MD algorithm, two virtual spheres of diameteyr Egs.(B1) and(B2), we get

with centers at; andr;, and with velocitiess; andv;, inter- mié

act via normal and tangential forces;;=Fn;+F, F, Pt) =Uo— 7 s —o3

=k,6%2-y,Mcbv,,. We introduce tangential spring with de- mk®+ 2% +XZ

flection obtained by the integration of tangential velocity K2+ X%+ uXZ m(k? + Z?)
through the period of impact=/dzv,; then the tangential ~|vo(l+e)+ 1+ 22 +x2° i@+ 2+ 22
force component is defined separately in two casgs: K

—kid5— ¥M¢duy, for stick phase, andF,=—su,Ft; for slip (B4)
phase. During the slip phase the magnituds isfadjusted to myuk?

fulfill |F| = |F,|. HereM =M/2 is reduced mass for rod-  Px(ty) = - Uo7 72 4 X7

rod collision, m is the mass of the rodé=d-r;; and v, w( )

=vj;-n;; are the overlap and relative velocity in the direction K2+ X2+ uXZ mXZ

of normal, n;=(r;—r;)/r;, while tangential directiont;; ~|vo(l+e)+ W(E+ 22 +xz7% I+ X2+ 22)
=v/v, is specified by the relative tangential velocity=v;; (B5)

—vnNij; uy is coefficient of friction between rods. MD is

performed in reduced units; all quantities are normalized b3f\|ow we can calculate the c.m. velocities after the contact
an appropriate combination of the diamedemass of virtual Substituting Eqs(B4) and (B5) with Uy=c,~»Z anduvg=c,

spher_em, and gravitation acceleratiog. Typical values of —V,+wX into Egs.(10) and(11), we get Eqs(18) and(19).
material parameterflzark\n=5>< 1(.)6.(mg/D), k.t=.95k“’ and Slip reversal Using Egs(5) and(6) and the slip condition
=7 =4x 10%(g/D)*". The coefficients of friction for rod- =uF, for t;<t<t;, we obtain the horizontal and vertical
rod and rod-bottom collisions aye, =0.3, u,=0.3, respec-  \&iocities att;,
tively. Unless specified otherwise, for interactions with walls
we also usegl,,=0.3. w(k2+22) - Xz
To expedite the integration of Newton’s equation we used Us = T(Pz(tf) - P, ty), (B6)
simple leapfrog algorithnj14] with constant time stept
=2.0x 10°5%(d/g)"%, however we tested that application of a )
more accurate integration scheme such as 5th-order Gear _ k®+ X — uXZ
predictor-corrector did not introduce considerable changes. vi=ut mié (P(ty) = P,(ty)). (B7)
Our choice of the values of material parameters is neither
optimal for the comparison with experimental data norAgain assuming kinematic restitution conditiop-—evy and
unique. Because we observed very good agreement with thesing Eqs(B1) and(B2), we get for the impulse during the
theoretical description for a single collisigsee Fig. 12we  reversal phase
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~ mié mié Substituting Egs(B8) and (B9) into Egs.(10) and (11),
P(ty) = Uo’u(kz + 79+ XZ T2+ X2 - uXZ we get tlhe c.m. velocities after the contact for the case of slip
reversa
K2+ X2+ uXZ
><{(1 +teugt ————>—— U, (B8 ) uk? uk?
C=Up|l-—5 = |t 0Z- 55—
K= +Z% + XZ XTI T u(kR+ 7)) + XZ K2+ X2 = uXZ
K2+ X2+ uXZ
Pt = - g TR K v GGG e
i U2 +Z%) +XZ K2+ X2— uXz
K2+ X2+ uXZ ' K? K?
_— C.=vg+U -
X [(1 vt e exze| (B9 27T+ ) + X2 IR+ X2 - uXZ
' . . 2 2
The final horizontal velocity of CP % [(1 +ug+ MUO} +V, - wX.
Iu,(k +Z ) +XZ
w(ke+7%) -XZ (B12)

K2+ X2+ uXZ !
wke+79+xz °]
(B10)

Us=— k2 2 |:(1+E)UO+
+ X - X2 Substituting uy=c,—®wZ and vy=c,~V,+wX, we get Egs.

(21) and(22).
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