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The dynamics of a set of rods bouncing on a vertically vibrated plate is investigated using experiments,
simulations, and theoretical analysis. The experiments and simulations are performed within an annulus to
impose periodic boundary conditions. Rods tilted with respect to the vertical are observed to spontaneously
develop a horizontal velocity depending on the acceleration of the plate. For high plate acceleration, the rods
are observed to always move in the direction of tilt. However, the rods are also observed to move opposite to
direction of tilt for a small range of plate acceleration and rod tilt. A phase diagram of the observed motion is
presented as a function of plate acceleration and the tilt of the rods which is varied by changing the number of
rods inside the annulus. Next we introduce a molecular dynamics method to simulate the dynamics of the rods
using the dimensions and dissipation parameters from the experiments. We reproduce the observed horizontal
rod speeds as a function of rod tilt and plate acceleration in the simulations. By decreasing the friction between
the rods and the base plate to zero in the simulation, we identify the friction during the collision as the crucial
ingredient for occurrence of the horizontal motion. Guided by the data from the experiments and the simula-
tions, we construct a mechanical model for the dynamics of the rods in the limit of thin rods. The starting point
of the analysis is the collision of a single rod with an oscillating plate. Three friction regimes are identified:
slide, slip-stick, and slip reversal. A formula is derived for the observed horizontal velocity as a function of tilt
angle. Good agreement for the horizontal velocity as a function of rod tilt and plate acceleration is found
between experiments, simulations and theory.
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I. INTRODUCTION

Granular materials come in all shapes and sizes. Idealized
spherical particles, have been typically used to unravel the
fascinating properties displayed by granular materials. In vi-
brated granular systems, periodic pattern formation, cluster
formation, and complex size separation have been observed.
However, anisotropic grains are nearly as numerous, and ex-
perience with thermal systems teaches us that shape matters.
Only a handful of investigations have studied the impact of
anisotropy on granular systems, but the ones that have been
accomplished point to a rich phenomenology.

For example, theoretical and numerical study of a low-
density gas of hard inelastic needles[1] shows two distinct
regimes of cooling related to the different scaling of rota-
tional and translational energy dissipation. In compaction ex-
periments with granular rods[2] vibrated in a tall narrow
container were observed to form ordered stacks, i.e., a smec-
tic phase similar to that found in thermal systems, with the
additional novelty that the rods align with the gravitation
field. More recently, self-organization of vortices was ob-
served to occur when a shallow bed of granular rods was
vibrated[3]. It was further shown that the tilt of the rod and
vertical vibration was important to the occurrence of the
novel dynamics. While a phenomenological model of forma-
tion and growth of the vortices has been proposed[4], a
detailed understanding of why the rods move horizontally on
a vertically vibrated plate was not reached.

The collective motion of vibrated anisotropic grains is of
considerable interest as an example of spontaneous ratchet
formation in a nonequilibrium dissipative system. Transport
of thermal particles in systems with microscopically asym-

metric potential has been studied in a number of recent
publications[5]. In Ref. [6], ratchet transport was demon-
strated for spherical grains on a vertically vibrated asymmet-
ric saw-tooth profile. In Ref.[7], the transport of elongated
grains on a vertically vibrated ratchet-shaped plate has been
studied numerically. However, as follows from results of
[3,4], and further described in this paper, the transport of
anisotropic grains may occur even without externally im-
posed microscopic asymmetry of forcing, in which case the
direction of motion is chosen as a result of spontaneous sym-
metry breaking.

In this paper, we apply experimental and numerical tools
to a system of rods in a vibrated annular container to eluci-
date the development of coherent horizontal dynamics in an-
isotropic systems. This geometry was specifically chosen to
simplify the phenomenology in order to focus on the mecha-
nisms for the observed dynamics. Our theoretical model is
developed for even simpler quasi-two-dimensional geometry
where all rods are confined to a vertical plane, and periodic
boundary conditions are imposed. The theory is based on a
detailed description of frictional collisions between rods and
the vibrating plate which makes use of the assumption of
constant kinematic restitution coefficient. While the issues of
restitution coefficient in application to frictional impact of
asymmetric bodies are still debated in the literature(see, for
example,[8]), we show that even this simplest model agrees
very well with soft particle molecular dynamics simulations
of individual collisions. To describe the collective motion of
the rods, we take advantage of the observation that in the
regime of stationary translation the mean horizontal momen-
tum transfer due to the collision with bottom plate is zero,
and assume that this condition holds for a typical collision.
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ur simulations show that during the flight the angular mo-
mentum of a single rod is transfered to other rods, so the
angular velocity of the rod at the end of the flight becomes
small and can be neglected. Furthermore, based on our nu-
merical simulations we make the assumption that the vertical
velocity of the center of mass(c.m.) just before the collision
is equal to the c.m. velocity in the beginning of the flight.
These assumptions allow us to find the mean translation c.m.
velocity in a closed form. We show that this theory captures
the essential mechanisms of the transport of tilted rods on a
vibrating plate.

The paper is organized as follows. First, we introduce the
experimental system and report the observed dynamics as a
function of the control parameters such as plate acceleration
and tilt of rods. Next we discuss the molecular dynamics
simulations corresponding to experimental parameters and
compare the results with the experimental data. Then using
the data as a guide, we construct a theoretical model for the
occurrence of spontaneous horizontal motion, and its depen-
dence on control parameters, and compare the results with
the data. Finally, we discuss the general implications of this
study.

II. EXPERIMENTS

The experimental system consists of an annular container
with an inner diameter of 7.28 cm and outer diameter of 9.45
cm, and is similar to that used in Ref.[3]. An image is shown
in Fig. 1(a). The sides are composed of clear acrylic and the
base plate is made of aluminum. The container is attached to
an electromagnetic shaker through a linear bearing which
allows only vertical motion. A frequency generator along
with a lock-in amplifier is used to excite the system with a
fixed frequency and amplitude. The data reported here for
frequency f =60 Hz, and we note that qualitatively similar
behavior is observed when the frequency is varied between
50 and 100 Hz. The acceleration of the container is measured
with an accelerometer and is reported in terms ofG, the
measured peak acceleration divided by the acceleration due
to gravity. The tilt to the rods is characterized by the anglef
with respect to the vertical axis.

The rods used for the experiments are cylindrical with a
diameter of 0.635 cm and length 5.08 cm. One of the ends is
semispherical with the radius equal to the radius of the rod,
and the other end is flat. The rods are made of a Delrin and
Teflon composite, and the measured dissipation coefficients
are as follows. The coefficient of static and kinetic friction
between the rod and the base plate is 0.36 and 0.25, respec-
tively. The coefficient of restitution is obtained by measuring
the kinetic energy of the rod just before and after a collision
with a stationary base plate. For nearly normal incidence
sf,5°d, the coefficient of restitution is approximately
0.8±0.1(see also[9].) When a single rod is placed inside the
annulus, the maximum tilt angle that it can have is 53° due
the curvature of the annulus. By increasing the total number
of rodsN in the annulus fromN=23 to 56, the tiltf can be
varied from 53° to 0°.

Figure 1(b) shows the typical motion of the bottom tip of
a rod as a function of time. The data is obtained by using a

high-speed Kodak digital camera with a frame rate of 1000
per second, and tracking the end of the rod with appropriate
use of lighting through the transparent side walls. The verti-
cal position of the tipz is observed to oscillate, as the rod
bounces on the vibrating plate[also shown in the Fig. 1(b)].
The flight time is observed to vary and although the rod
appears to almost always hit the plate on its upstroke, a dis-
tribution of phases is observed. We will discuss this issue
further after introducing the molecular dynamics simulations
in a later section. On the other hand, the horizontal position
of the tip is observed to increase approximately linearly al-
though some oscillatory motion is also seen to be super-
posed. The slope of thex-position gives the average horizon-
tal velocity which is consistent with dividing the average
circumference of the annulus by the amount of time taken by
the rods to go around once. This second method is used to
report observed average horizontal velocities. The data was
obtained by measuring the average speed while the rods go
around once in the annulus. The data was measured 2–3
minutes after the rods were reset and during which a constant
vibration amplitude was maintained.

The measured horizontal speedcx as a function of the tilt
of the rodsf for a fixedG=3.3 is shown in Fig. 2(a). cx is
observed to increase from zero to a peak value and then

FIG. 1. (a) Annular geometry used in the experiments.(b) The
horizontal and vertical position of the rod end at the bottom as a
function of time. The position of the oscillating bottom plate is also
plotted for reference. The three plots are shifted for clarity.(G
=3.3, N=50, f=13°.)
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decrease. The rods are observed to always move in the same
horizontal direction as the tilt. It is to be noted that the error
in determiningcx arises from run to run variability due to
slight differences in packing inside the annulus rather than

from the actual measurement of the velocity itself. In this
case, seven separate realizations were used to arrive at the
average value ofcx for a particular number of rods.

By varying G for a few values off, we obtain its impact
on observed horizontal velocities[see Fig. 2(b)]. Positive
horizontal velocity is observed to commence only above a
finite G,1.6 is reached. BelowG,1.6, no net horizontal
velocity occurs except for a narrow parameter range where a
horizontal motion in a direction opposite to the tilt is ob-
served. As shown in the inset to Fig. 2(c), this reverse hori-
zontal motion is observed to be two orders of magnitude
slower than the forward motion. Although reverse motion is
observed over a range off, the data is plotted for this par-
ticular f, because it displays the fastest and most robust
measurements of the horizontal speed in the reverse direc-
tion.

A phase diagram of the various kinds of observed motion
is shown in Fig. 2(d) as a function ofG and f. Forward
motion indicates parameters for which horizontal motion oc-
curs in the direction of tilt, and reverse motion, indicates
when the motion is in the opposite direction. The reverse
motion is observed to occur only for a narrow range of pa-
rameters. The horizontal motion is predominately along the
direction of tilt provided a minimum acceleration for the
container is achieved.

To study the impact of the shape of the rod tip, we also
performed experiments by flipping the rods so that the flat
end is at the bottom. Figure 2(c) compares the measuredcx
as a function ofG for rods with rounded and flat ends but
otherwise under identical conditions. When the flat end in-
teracts with the bottom plate, the observed horizontal veloci-
ties are lower, the minimum rod tilt required to obtain hori-
zontal motion is 8°, but otherwise the qualitative phenomena
remains the same.

III. NUMERICAL SIMULATIONS

We performed a series of numerical simulations of the
bouncing rods on a vibrated plate. The rods are modeled as
spherocylinders of diameterd, lengthl, massm, and moment
of inertia I. A rod has three translational and two rotational
degrees of freedom, the rotation of a rod around its own axis
is neglected. Our numerical algorithm is based on the “soft
spheres” molecular dynamics technique[10]. The interaction
forces between colliding spherocylinders are calculated via
the interaction between viscoelastic virtual spheres of diam-
eter d centered at the closest points between the axes of
spherocylinders, so that the cylinders are in contact when-
ever virtual spheres are[11]. The normal forces between vir-
tual spheres are computed using Hertzian model and the tan-
gential frictional forces are computed by the Cundall-Strack
algorithm. They lead to the kinematic restitution coefficient
of about 0.65–0.7 slightly varying with impact angle. In most
cases we used equal friction coefficientsmrr =mrb=mrw=0.3
for all sliding surfaces(rod-rod, rod-bottom and rod-side
wall) and ignored the difference between dynamic and static
friction coefficients while comparing to experiments. The
forces arising from the interaction of virtual spheres are then
applied to the rods(see Appendix A for details). Collisions

FIG. 2. (a) The average horizontal velocitycx of the rods as a
function of tilt anglef. (b) cx versusG for three different tilt angles.
(c) The effect of rod end shape on measuredcx. A flat end rod is
observed to move slowly compared to a rod with a round end.
Horizontal motion in a direction opposite to the tilt is observed over
a small range of lowG. sf=28°±2°.d Inset:cx measured between
G=1 and 2 is replotted to clarify the small magnitude of the reverse
motion. (d) A phase diagram denoting the kinds of horizontal ve-
locity observed relative to the direction of the tilt. The rods are
observed to move in the direction of the tilt under most conditions.
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between rods and walls of the container are handled in a
similar fashion. For example, when rod collides with the
bottom a virtual sphere at the end of rod is interacting with a
virtual sphere of infinite radius which has velocity of the
bottom. The motion of rods was obtained by integrating the
Newton’s equations with the forces and torques produced by
interactions of a rod with all the neighboring rods, walls of
the container, and by gravity.

Figure 3 illustrates two configurations employed in nu-
merical simulations. An annular geometry[Fig. 3(a)] was
used to match closely the experimental setup. However, to
separate the effects of side wall friction and oblique colli-
sions among the rods due to annulus curvature, we also stud-
ied the quasi-2D geometry of Fig. 3(b) in which axes of all
rods are constrained to thex-z plane. This geometry is more
amenable to the theoretical analysis and was used for com-
parison with our theoretical predictions.

In simulations we observed robust drift of the rods in the
direction of inclination in agreement with experiments[13].
Figure 4(a) shows the average translation velocity as a func-
tion of the average inclination angle for the annulus geom-
etry and parametersf =60 Hz andG=3.3 used in experi-
ments. The results shown in this figure are obtained from
eight independent runs. In every run evenly distributed rods
were dropped into the vibrating annulus. After a short tran-
sient rods tilted in one or other direction due to domino-like
effect. Simulation continued until average tilt of the rods and
average translation velocity reached stationary values.

The translation velocity grows linearly for smallf,
reaches maximum atf<18° and also forf<35° after
which it decays to zero at largef. For intermediate incli-
nations, 18°,f,35°, in most cases we observed notice-
able slowdown which however is not typically observed in
experiment. We will discuss the source of this discrepancy
below.

Figure 4(b) shows the dependence of the average transla-
tional velocity of rods on the acceleration of the container at
fixed frequency for a number of inclinations. As in experi-
ments the motion starts above a(slightly lower) threshold
G.1.5. AboveG<2.0 this velocity grows roughly linearly
with the acceleration. We explain the presence of the thresh-
old by the friction with side walls. Indeed, in the numerical
experiments in quasi-2D geometry there is no threshold and
cx~G−1 right down toG=1.0. Figure 4(c) depicts explicitly
how the average translational velocity and average tilt de-
pend on the coefficient of friction with the sidewallmrw, for
a fixed number of rods. As one could expect this dependence
shows monotonic decay whenmrw is increased; less expected

is more than tenfold difference in velocities for large and
small mrw which probably explains systematically slower
translational velocities in simulations and underlines an im-
portance of the proper account of friction with walls.

FIG. 3. Two types of geometry used in simulations:(a) annulus
geometry;(b) quasi-2D geometry with periodic boundary condi-
tions alongx where the motion of rods is constrained to thex-z
plane.

FIG. 4. The results of simulations in the annular geometry:(a)
average translational velocity of rods as a function of average tilt at
f =60Hz, G=3.3; (b) idem as a function ofG for a number of tilt
angles;(c) idemand average tilt(inset) as a function of the coeffi-
cient of friction between the rods and the wallssmrr =mrb=0.3d; (d)
idem and average tilt(inset) as a function of the coefficient of
friction between the rods and the bottomsmrr =mrw=0.3d. Insets in
panels(a) and(d) show the dependences of the average tilt anglef
on corresponding friction coefficients.
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Next, to eliminate the effects of the curved side walls and
out-of-plane rod-rod collisions, we simulated the collective
rod motion in a quasi-2D geometry with periodic boundary
conditions along the direction of the rod tilt[Fig. 3(b)]. All
rods are confined strictly to thex-z plane, and the interaction
with side walls was ignored, while friction with the vibrating
bottom plate and among the rods was taken into account. We
used a fixed number of rodssN=40d and varied the length of
the container, thereby changing the tilt anglef [see Fig.
3(c)]. The relation between the length and the tilt is well
described by a simple formula cosf=dN/L, however a
weak dependence of the mean tilt angle on other control
parameters is also observed[see, e.g., insets to Figs. 4(c) and
4(d)].

Figures 5(a)–5(c) shows the mean values of rod velocities
before and after impacts. As seen from Fig. 5(a), the angular
velocity before the collision is rather small(apparently, it
decays after inelastic collisions with other rods during flight).
Figures 5(b) and 5(c) shows the horizontal and vertical cen-
ter of mass(c.m.) velocities of rods just before and after
collision in the laboratory frame as a function off. As seen
from these plots, the pre- and post-collisional velocities are
close to each other. The mean velocity of the plate at the
moment of collision is shown in Fig. 5(d). The velocity is
only weakly dependent onf and is close toV0/2 (V0
=Gg/2pf is the amplitude of the plate velocity). In Fig. 5(a)
one can also see a noticeable variation of the horizontal
translation velocity nearf=30° which however is not ac-
companied by a sharp drop atf<20° observed in 3D geom-
etry. As an example illustrating the statistics of individual
collisions on Fig. 5(e) we plot distributions of the horizontal
c.m. velocities before and after collisions with the bottom.
The distributions were obtained from the statistics of all col-
lisions of all rods(about 900 collisions per rod). Note that
the distributions are plotted for the value of tiltf=15° at
which the mismatch between the two distributions is the
largest, forf.20° they virtually coincide.

We conclude that there are two different mechanisms
which independently contribute to the slowdown of rods at
intermediate values of tilt angle. The first mechanism that
only operates in 3D geometry is related to the spontaneous
formation of the nonuniformity of rod arrangement in an
annulus at intermediate inclination angles. For small tilt, the
rods are arranged in a uniform hexagonal-like packing(see
Fig. 6) with one rod near the inner wall of the gap, next near
the outer wall and so on. This “perfect” arrangement may be
perturbed by the presence of one or few one-rod defects due
to geometrical frustration, however their cumulative effect is
quite small and does not change the collective motion con-
siderably. Atf<18° in most of the numerical experiments,
the hexagonal packing spontaneously breaks and as a result a
localized region with much larger tilt emerges. Atf<25° it
involves roughly half of the rods[Fig. 6(b)]. Eventually, this
region spans the wholē perimeter and the dependencecxsfd
becomes smooth again. This tilt nonuniformity appears to
play a significant role in slowing down the rods drift. This
effect is exacerbated in numerical simulations by neglecting
the rod rotation around its axis. Therefore, rolling of rods
along the side walls is prohibited by the numerical model,
and thus the sidewall friction is effectively enhanced.

The second mechanism operates both in 2D and 3D, and
it has to do with the bifurcation between long flights span-
ning more than one period of vibrations at small tilt angles
and short flights which last one period of vibration at large
tilt angles(see Fig. 7 where the tip trajectories are shown for
two different tilt angles corresponding to the two regimes).
This transition occurs atf<30° and it leads to the notice-
able difference in the distribution of the landing times over
the phase of the plate vibrations for different tilt angles(see
Fig. 8). At large angles the landing times are mostly confined
to the phase interval in which the plate moves upward,
whereas at smaller tilt angles there is a significant probability

FIG. 5. The mean c.m. velocities of rods before and after colli-
sion as a function of inclination anglef in quasi-2D numerical
simulations. The parameters arel =9.5d, G=3.3, andm=0.3. For
comparison with experiments the velocities are plotted in dimen-
sional units for experimental values ofd=0.6 cm andf =60 Hz: (a)
angular velocitiesv andv8; (b) horizontal c.m. velocitiescx andcx8;
(c) vertical c.m. velocities −cz andcz8; (d) the mean plate velocity at
the time of collision;(e) distributions ofcx andcx8 for f=15°.
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of collisions during the downward motion of the plate
sp /2,u,3p /2d, where u=mods2pft ,2pd. This bifurca-
tion explains the bump in the dependence of the mean verti-
cal plate velocity at the time of rod-plate collision[see Fig.
5(d)] and correspondingly the horizontal translation veloci-
ties cx, cx8 on the tilt angle[see Fig. 5(b)].

Overall, our simulations show that the side walls do play
an important role in determining the magnitude of the hori-
zontal velocity of rods. As seen from comparison of Figs. 4
and 5, the transport velocity in quasi-2D case is 2.5 times
greater than in the annulus for the same values of parameters.
On the other hand, they allow us to develop a theoretical
model of the collective rod motion based on the observations

that, to a first approximation, the pre- and post-collision cen-
ter of mass translation speeds are close to each other and that
the angular velocity before the collision can be neglected.

IV. ROD COLLISION WITH PLATE

In this section we derive the necessary formulas for an
isolated collision between a rod and a vertically moving
plate. We confine the analysis to the case of in-plane, eccen-
tric, oblique frictional impact. Our derivation is based on the
classical analysis which assumes the constant kinematic res-
titution coefficient(see Ref.[8]).

Consider uniform rigid rod of massm and lengthl collid-
ing with a plate at pointO (see Fig. 9). We place the system
of coordinates at pointO so that the common normaln co-
incides with the ortẑ and the axis of rod, prescribed by unit
vectoru, is in thex-z plane,u=(sinsfd ,0 ,cossfd). Prior to
the collision, the rod has translational velocity(associated
with the center of massG) c=scx,0 ,czd, and angular velocity
v=s0,vy,0d, and the plate has only vertical velocityV
=s0,0,Vzd. The corresponding post-collisional velocities of
rod are denoted by primes.

Newton’s second law gives equations for translational and
rotational motion of the rod. In differential form they read

mdc = dP, s1d

Idv = −
l

2
u 3 dP, s2d

where I is the moment of inertia of a rod for its rotational
motion around the center of massG. dP=Fdt is the differ-

FIG. 6. The results of simulations in the annular geometry illus-
trating formation of the nonuniformity in the forf =60 Hz andG
=3.3. Shown are(normalized) horizontal projections of the rods’
directors for two numbers of rods:(a) N=55 and(b) N=44; the
mean tilts aref<9° andf<22°, respectively.

FIG. 7. Typical trajectories of the tip of a rod in numerical
simulations for two different tilt anglesf=9° (a) and 34°(b); other
parameters are the same as in Fig. 5. Dashed blue lines indicate the
position of the bottom plateZbot.

FIG. 8. Distribution of collision times of rods over the phases of
the plate vibration for different values of the tilt anglef. Solid line:
approximationHsud=s1+cosud /2p used for the theoretical analy-
sis, whereu is the phase of the plate velocity,Vpl=V0 cosu. Param-
eters are the same as in Fig. 5.

FIG. 9. Geometry of the collision between rod and sphere.
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ential of the impulseP exerted on the rod during the colli-
sion.

The impulse acquired by the rod is the integral of the
reaction force over the time of collision. The reaction force
depends on the relative velocity at the contact point(CP),

v = c −
l

2
v 3 u − V . s3d

The Newton’s law for the velocity of the contact point
(CP) reads

m
dv

dt
= F +

ml2

4I
fF − usF ·udg s4d

or, in projections,

mu̇= −
XZ

k2 Fz +
k2 + Z2

k2 Fx, s5d

mv̇ =
k2 + X2

k2 Fz −
XZ

k2 Fx, s6d

whereX, Z are coordinates of the center of mass(c.m.) of the
rod, andk=sI /md1/2 is the radius of gyration of the rod. In
writing Eq. (4) we assumed that the time of collision is so
short that we can neglect the changes in the plate position
and velocity. Depending on initial conditions, the impact pro-
ceeds according to one of three different scenarios.

Slide. Let us denote the duration of the contacttf, so
Fzs0, t, tfd.0, Fzs0d=Fzstfd=0. We assume that att=0,
us0d=u0.0 andvs0d=v0,0. After initial contact, the rod
slides along the plate, soFx=−mFz (for brevity we dropped
the subscriptrb of the friction coefficient). If

u* ; u0 −
XZ+ msk2 + Z2d

mk2 Pzstfd . 0 s7d

[herePzstd=e0
t Fzstddt] the slip in positive direction continues

throughout the contact, anduf ;ustfd=u* . While the total
impulse Pzstfd is not knowna priori, it can be determined
from the kinematic conditionv f =−ev0 assuming that Eq.(7)
is satisfied. Then integrating Eq.(6) from t=0 to tf we get

Pzstfd = − v0s1 + ed
mk2

k2 + X2 + mXZ
s8d

and correspondingly

Pxstfd = v0s1 + ed
mmk2

k2 + X2 + mXZ
. s9d

Now we can calculate the c.m. velocities after the contact
using

cx8 = cx + Pxstfd/m, s10d

cz8 = cz + Pzstfd/m. s11d

Replacingu0=cx−vZ andv0=cz−Vz+vX we get the center
of mass(c.m.) velocities immediately after the collision

cx8 = cx +
ms1 + edk2scz − Vz + vXd

k2 + X2 + mXZ
, s12d

cz8 = cz −
s1 + edk2scz − Vz + vXd

k2 + X2 + mXZ
. s13d

Using Eq. (8) the no-stop sliding condition(7) can be
written as

u* ; u0 +
XZ+ msk2 + Z2d
k2 + X2 + mXZ

v0s1 + ed . 0. s14d

If the condition(14) is violated, at a certain timet1 during
collision the sliding stops,ust1d=0. At t= t1, the horizontal
CP velocityu1=0 and the vertical CP velocity is

v1 = v0 +
k2 + X2 + mXZ

msk2 + Z2d + XZ
u0. s15d

At t. t1 the contact may remain at rest or reverse the direc-
tion of sliding.

Slip-stick. If

msk2 + Z2d . XZ, s16d

the contact sticks, and the horizontal velocityust1, t, tfd
=0. During this phase,

Fx =
XZ

k2 + Z2Fz. s17d

Assuming again the kinematic restitution lawv f =−ev0, we
derive the expression for the c.m. velocity at the end of the
collision (see Appendix B):

cx8 =
scx − vZdZ2 − scz − Vz + vXds1 + edXZ

k2 + X2 + Z2 + vZ, s18d

cz8 =
scz − Vz + vXdfX2 − sk2 + Z2deg − scx − vZdXZ

k2 + X2 + Z2

+ Vz − vX. s19d

Note that for the case of slip-stick, the post-collisional ve-
locities are independent of the friction coefficient.

Slip reversal. If

msk2 + Z2d , XZ, s20d

the contact slides back after stopping. In this phaseFx
=mFz. Again omitting the details of derivation(see Appendix
B) we give here the formulas for the c.m. velocity at the end
of collision:

cx8 = cx − scx − vZd
2mk2sk2 + X2d

(msk2 + Z2d + XZ)sk2 + X2 − mXZd

− scz − Vz + vXd
mk2s1 + ed

k2 + X2 − mXZ
, s21d

cz8 = cz − scx − vZd
2mk2XZ

(msk2 + Z2d + XZ)sk2 + X2 − mXZd

− scz − Vz + vXd
k2s1 + ed

k2 + X2 − mXZ
. s22d

Thin rod. For a thin rod of lengthl, we use valuesX
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= l sinf /2, Z= l cosf /2 k= l /2Î3, I =ml2/12. Let us first
outline the boundaries of three different regimes(continuous
slide, slip=stick, and slip reversal) in the (f, m) parameter
plane. While the bifurcation line indicating the transition
from slip-stick to slip reversal is universal, the condition of
continuous slide(14) additionally depends on the values ofe
and two non-dimensional ratiossVz−czd /cx andvl /cx. Figure
10 shows the bifurcation diagram fore=0.8 and three differ-
ent values ofsVz−czd /cx for v=0. In vibrating plate experi-
ments,v is small, and the ratiosVz−czd /cx is large(the trans-
lation velocity is small compared withVz), so the regime of
sliding can only be observed for smallm,mc=−cxf4czs1
+edg−1 and either large or smallf. For largerm.mc, at small
f the slip-stick regime occurs, and at larger angles there is
the slip reversal regime. The critical anglefc at which the

transition from slip-stick to slip reversal occurs, is deter-
mined from equation for fcf3 sinfc cosfc=ms1
+3 cosfc

2dg. Solving this equation, we obtain

fc =
1

2
arccos

Î9 − 16m2 − 5m2

3s1 + m2d
. s23d

For smallm, fc= 4
3m+Osm3d. Note that the critical angle is

only dependent on the friction coefficientm and becomes
p /2 at m=3/5. At largerm, the slip-reversal scenario does
not occur at any tilt angle.

V. COLLECTIVE MOTION OF RODS

In order to analyze the collective motion of bouncing rods
using the results for an individual rod collision obtained in
the previous section, we have to make additional assump-
tions regarding the interactions of rods. In the formulation of
these assumptions, we use the numerical and experimental
observations. Referring to Fig. 5, we assume that in the sta-
tionary translation regime,v=0, cx=cx8, cz=−cz8. Note that
the latter simple assumption is not very accurate for largeG
and smallf, however using it still leads to a reasonable
agreement between the theory and simulations. A more ac-
curate set of closure conditions would require a detailed de-
scription of the complicated interactions of the rod during the
flight between two consecutive collisions.

Adopting these simplifications, we immediately arrive to
the relations for the horizontal and vertical velocities of the
rods. Note that among the three cases outlined above, the
sliding regime cannot be realized in the regime of stationary
translation, since it would imply a continuous decay ofcx. So
eventually one of the two other regimes will be established
depending on the inclination angle[in a finite container, the
dynamically selected inclination angle is weakly dependent
on the driving acceleration, see inset in Fig. 13(b)].

Slip-stick. Assuming cx8=cx, cz8=−cz, and v=0, we get
from Eqs.(18) and (19) in the slip-stick regimesf,fcd

cx8 =
2s1 + edXZVz

k2s1 − ed + 2X2 , s24d

cz8 =
s1 + edk2Vz

k2s1 − ed + 2X2 . s25d

For a thin rod, Eq.(24) yields

cx8 =
6s1 + edsinf cosf

1 − e + 6 sin2 f
Vz. s26d

Slip reversal. In the slip-reversal regimesf.fcd, we
solve Eqs.(21) and (22) with constraintscx=cx8, cz=−cz8, v
=0. As a result, we get

cx8 =
s1 + edmsk2 + Z2dVz + s1 + edXZVz

k2s1 − ed + 2X2 , s27d

FIG. 10. Bifurcation diagrams of single rod collision with a
plate for e=0.8, v=0, and three different values ofsVz−czd /cx: 1
(a), 2 (b), and 10(c).
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cz8 =
s1 + edk2Vz

k2s1 − ed + 2X2 . s28d

Note that the vertical velocitycz8 is again independent ofm
and in fact coincides with Eq.(25). It is easy to see that in
the transition point from slip-stick to slip reversal regime
whereXZ=msk2+Z2d the values of the horizontal translation
speed(24) and (27) coincide.

For a thin rod case, we obtain from Eq.(27)

cx8 =
s1 + edfms1 + 3 cos2 fd + 3 sinf cosfg

1 − e + 6 sin2 f
Vz. s29d

The vertical velocity after collision is given by

cz8 =
1 + e

1 − e + 6 sin2 f
Vz s30d

in both slip-stick and slip reversal regimes. Figure 11 shows
the dependence of the normalized vertical velocity and the
translation speedcz8 /Vz,cx8 /Vz on the inclination anglef for
the casev=0. The transition from slip-stick to slip reversal
dependence occurs atfc.

The remaining question is, what isVz? ObviouslyVz is
smaller than the amplitudeV0 of the plate velocity V
=V0 coss2pftd, because the rods collide with the plate at dif-
ferent phases and not only at phase 0 whenV=V0. A simple
assumption which we are going to make is thatVz=aV0 with
a constant fitting parametera,1. In fact our numerical
simulations indicate thata is close to 0.5 but varies slightly
with f because the landing phase distribution depends onf
(see Fig. 8), but for the sake of simplicity we shall ignore
this dependence. The valuea=0.5 is obtained if we approxi-
mate the distribution of collision phases asHsud=s1
+cosud /2p, whereu is the phase of the plate velocity,Vpl

=V0 cosu. Then we obtain for the average plate speed at
collision,

Vz = V0s2pd−1E
0

2p

cosus1 + cosuddu = V0/2. s31d

At small 0,G−1,1, the distribution deviates signifi-
cantly from Hsud. The rods only leave the plate for short
flights near the top position of the plate at which the vertical
acceleration is smaller than −g, and the vertical velocityV is
close to zero. Due to inelasticity, after landing the rod may
perform a few more smaller bounces before coming to rest
until the next period. While it is difficult to describe this
regime analytically, one can expect thatVz~G−1 at smallG.
This scaling can be obtained by assuming that the landing
times are uniformly distributed during the small part of the
vibration period during which the plate acceleration is less
than −g.

VI. DISCUSSION

In this section we compare the theoretical results with
numerical simulations for the quasi-2D case. First, we tested
the theoretical predictions for an isolated rod bouncing off
the plate. In quasi-2D geometry we dropped a single rod with
a prescribed translational velocity of the center of mass and
with zero rotational velocity on a motionless plate for a
range of tiltsf[ f0,90g. The resulting post-collisional ve-
locities are depicted in Fig. 12. The same figure shows tabu-
lated analytical formulas(12), (13), (18), (19), (21), and(22)
with e=0.65,m=0.4 and −cx/cz=2. The quality of the agree-
ment for different impact velocities was approximately the
same. One can clearly see the transitions between three dif-
ferent regimes of rods bouncing: slide, slip-stick, and slip
reversal. A slight difference between the theory and simula-
tions in the vertical velocity at small tilt angles is related to
the above-mentioned variations of the kinematic restitution
coefficient with tilt angle in soft-particle MD simulations
which was ignored in an analytical calculations.

A comparison between the theory and MD simulations for
the mean translation velocity is shown in Fig. 13. Fig. 13(a)
shows the horizontal translation velocity as a function of the
mean tilt angle. The overall dependence is in reasonable
agreement with the theory; however, some noticeable differ-

FIG. 11. Normalized vertical velocity after collisioncz8 /Vz

(green dot dashed line) and the translation velocitycx8 /Vz (black
solid line) as a function of the inclination angle fore=0.65 andm
=0.3. Red dashed shows the unphysical branches of the slip-stick
and slip reversal dependencies(18) and(21) for the horizontal post-
collisional velocity.

FIG. 12. Postcollisional c.m. velocitiescx8 andcz8 as a function of
tilt angle for m=0.4 and −cz/cx=2. Symbols indicate the results of
numerical simulations, and lines show theoretical predictions for
different collision scenarios using constant coefficient of restitution,
e=0.65. Solid lines denote slip-stick, dash lines denote continuous
slip, and dash-dot lines denote slip-reversal.
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ences are obvious. This should not be surprising, given the
crude assumptions made to describe the dynamics of rods
during flights between collisions. As mentioned above, the
“bump” visible atf<30° is related to a transition from the
regime of “long” flights that span more than one period of
vibrations, to the “short” flights that last a fraction of the
period of vibrations. As seen in Fig. 8, these two regimes are
characterized by significantly different distributions of the
collision times over the vibration phases.

Figure 13(b) shows theG dependence of the horizontal
translation velocity. As expected from the theory, and seen in
experiments, the horizontal translation velocity is linearly
proportional toG at largeG. Unlike the annular case, the
translation velocity turns zero atG=1, and indeed it grows as
G−1 at smallG−1. Figure 13(c) addresses the question of

the rod length dependence of the horizontal translation ve-
locity. According to the theory for thin rods,cx should be
independent ofl. On the other hand, the drift should disap-
pear when the aspect ratio of the rod approaches 1(the case
of spherical particles). As seen in Fig. 13(c), the translation
velocity grows linearly at smalll .1, but this growth satu-
rates atl <3 after which the translation velocity is indepen-
dent of l in agreement with the theory.

There are several possible sources of discrepancies be-
tween the theory and numerics(and experiments). First, in
describing individual collisions we made an implicit assump-
tion that the collision time is small as compared with the
period of oscillations. This assumption may break for high
frequency vibrations or in the regime of smallG when rods
spend a significant portion of the period in contact with the
plate. Furthermore, we used the simplest closure assumptions
to relate the horizontal and vertical velocities of rods after
and before the flight. While the relationcx=cx8 appears to
work well throughout the range of parameters corresponding
to experimental conditions, the other conditioncz=−cz8 holds
only approximately. Our numerical experiments showed a
significant(up to 50%) deviations from this simple relation
at largeG, when many inelastic collisions occur during the
flight. We were unable to describe this effect theoretically,
and chose to sacrifice the accuracy of comparison rather than
introduce an unknown fitting parameter −cz/cz8.

Comparison between 2D and 3D simulations(Figs. 4 and
13) shows that the characteristic translation velocity in 3D
case is 2.5 times smaller than in 2D case with the same
material parameters. This difference may be accounted for by
the frictional interaction with side walls. We systematically
studied the dependence of the translation velocity in the an-
nulus on the friction coefficientmrw between the rods and the
side walls, and found that indeed it vaires strongly withmrw,
in particular, the translation velocity atmrw=0.3 is 2.5 times
smaller thancx at mrw=0 [Fig. 13(b)].We also analyzed the
dependence of the translation velocity on the friction coeffi-
cient with the bottom, and found that for largemrb the trans-
lation velocity becomes independent ofmrb. This is consis-
tent with the theoretical argument that at largemrb the slip-
stick scenario occurs for an arbitrary tilt anglef.

As a conclusion, we studied experimentally and theoreti-
cally the drift of anisotropic particles(rods) on a vibrated
plate. The experiments in the annulus showed the robust drift
of rods in the direction of their tilt, at the normalized vertical
accelerationG.1.5. For smaller values of 1,G,1.5, very
small reversedrift was observed. We developed a numerical
algorithm which allowed us to study the interaction of rods
in soft-particle MD simulations. Simulations of rods in an
annulus with parameter closely matched experiment, re-
vealed very similar behavior, both qualitatively and quanti-
tatively.

Our theoretical description of the rod translation is based
on the detailed analysis of frictional collisions between an
individual rod and the moving plate. The effects of collective
interaction of rods during flights between collisions are taken
into account using the simplest phenomenological closure
conditions based on the experimental findings and MD simu-
lations. As a result, closed formulas for the horizontal trans-
lation velocity are obtained. A direct comparison between the

FIG. 13. Results of simulations in quasi-2D geometry.N=40
rods are placed in a periodic domain of different lengthsL which
determine the tilt anglef0. (a) Average horizontal velocity of rods
as a function of the inclination angle forG=3.3; solid line: theory
(24), (29), and (31) with e=0.65, m=0.3; (b) average horizontal
velocity of rods and average tilt(inset) as a functionG for L=43;
(c) average horizontal velocity of rods and average tilt as a function
of the length of rodsl =h0+1, whereh0 is the distance between the
centers of spherical caps.N=40 rods are placed in a periodic do-
main of lengthL=41.4 [12], the bottom is oscillating at frequency
f =60 Hz and acceleration isG=2.5.
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theory and experiments is complicated by the role of inter-
action of rods with frictional side walls which is unaccounted
for in the theory. However, we found a reasonable agreement
between the theory and numerics for quasi-2D geometry
when rods are confined to thex-z plane with periodic inx
boundary conditions. Since the same numerical code de-
scribes well the experiment in the annulus geometry, we infer
that the theory correctly captures the mechanism of the rod
translation in experiment.

Some more subtle effects, however, are difficult to model
theoretically. The(very slow) reverse drift of rods for small
G is presumably due to the small negative value of average
Vz, however to calculate the meanVz one needs a detailed
knowledge of the distribution of landing times for small
which is difficult to obtain theoretically.
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APPENDIX A: MOLECULAR DYNAMICS ALGORITHM

In our MD algorithm, two virtual spheres of diameterd,
with centers atr i andr j, and with velocitiesvi andv j, inter-
act via normal and tangential forces,Fi j =Fnni j +Ft, Fn
=knd3/2−gnMedvn. We introduce tangential spring with de-
flection obtained by the integration of tangential velocity
through the period of impact,s=edtvt; then the tangential
force component is defined separately in two cases:Ft=
−ktds−gtMedvt, for stick phase, andFt=−mrrFnt i j for slip
phase. During the slip phase the magnitude ofs is adjusted to
fulfill uFt u =mrr uFnu. HereMe=M /2 is reduced mass for rod-
rod collision, m is the mass of the rod,d=d−r ij and vn
=vi j ·ni j are the overlap and relative velocity in the direction
of normal, ni j =sr i −r jd / r ij , while tangential directiont i j

=vt /vt is specified by the relative tangential velocityvt=vi j
−vnni j ; mrr is coefficient of friction between rods. MD is
performed in reduced units; all quantities are normalized by
an appropriate combination of the diameterd, mass of virtual
spherem, and gravitation accelerationg. Typical values of
material parameters arekn=53106smg/Dd, kt=95kn, and
gn=gt=43102sg/Dd1/2. The coefficients of friction for rod-
rod and rod-bottom collisions aremrr =0.3, mrb=0.3, respec-
tively. Unless specified otherwise, for interactions with walls
we also usedmrw=0.3.

To expedite the integration of Newton’s equation we used
simple leapfrog algorithm[14] with constant time stepDt
=2.0310−5sd/gd1/2; however we tested that application of a
more accurate integration scheme such as 5th-order Gear
predictor-corrector did not introduce considerable changes.

Our choice of the values of material parameters is neither
optimal for the comparison with experimental data nor
unique. Because we observed very good agreement with the
theoretical description for a single collision(see Fig. 12) we

expect our algorithm to capture details ofshort-termcolli-
sion with plate. However, for a long-term collision it may not
be accurate.

APPENDIX B: DERIVATION OF REFLECTION
COEFFICIENTS

Slip-stick. The stopping conditionust1d=0 gives the total
vertical impulse exerted by a plate on a rod for 0, t, t1

Pzst1d = u0
mk2

msk2 + Z2d + XZ
sB1d

and correspondingly

Pxst1d = − u0
mmk2

msk2 + Z2d + XZ
. sB2d

Vertical velocity at the end of the contact

v f = v1 +
k2 + X2 + Z2

k2 + Z2 E
t1

tf

Fz = v0 +
k2 + X2 + mXZ

msk2 + Z2d + XZ
u0

+
k2 + X2 + Z2

msk2 + Z2d
(Pzstfd − Pzst1d). sB3d

Assuming the kinematic restitution lawv f =−ev0 and using
Eqs.(B1) and (B2), we get

Pzstfd = u0
mk2

msk2 + Z2d + XZ

− Fv0s1 + ed +
k2 + X2 + mXZ

msk2 + Z2d + XZ
u0G msk2 + Z2d

k2 + X2 + Z2 ,

sB4d

Pxstfd = − u0
mmk2

msk2 + Z2d + XZ

− Fv0s1 + ed +
k2 + X2 + mXZ

msk2 + Z2d + XZ
u0G mXZ

sk2 + X2 + Z2d
.

sB5d

Now we can calculate the c.m. velocities after the contact.
Substituting Eqs.(B4) and (B5) with u0=cx−vZ andv0=cz
−Vz+vX into Eqs.(10) and(11), we get Eqs.(18) and(19).

Slip reversal. Using Eqs.(5) and(6) and the slip condition
Fx=mFz for t1, t, tf, we obtain the horizontal and vertical
velocities attf,

uf =
msk2 + Z2d − XZ

mk2 (Pzstfd − Pzst1d), sB6d

v f = v1 +
k2 + X2 − mXZ

mk2 (Pzstfd − Pzst1d). sB7d

Again assuming kinematic restitution conditionv f =−ev0 and
using Eqs.(B1) and(B2), we get for the impulse during the
reversal phase
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Pzstfd = u0
mk2

msk2 + Z2d + XZ
−

mk2

k2 + X2 − mXZ

3Fs1 + edv0 +
k2 + X2 + mXZ

msk2 + Z2d + XZ
u0G , sB8d

Pxstfd = − u0
mmk2

msk2 + Z2d + XZ
−

mmk2

k2 + X2 − mXZ

3Fs1 + edv0 +
k2 + X2 + mXZ

msk2 + Z2d + XZ
u0G . sB9d

The final horizontal velocity of CP

uf = −
msk2 + Z2d − XZ

k2 + X2 − mXZ
Fs1 + edv0 +

k2 + X2 + mXZ

msk2 + Z2d + XZ
u0G .

sB10d

Substituting Eqs.(B8) and (B9) into Eqs.(10) and (11),
we get the c.m. velocities after the contact for the case of slip
reversal

cx8 = u0F1 −
mk2

msk2 + Z2d + XZ
G + vZ −

mk2

k2 + X2 − mXZ

3Fs1 + edv0 +
k2 + X2 + mXZ

msk2 + Z2d + XZ
u0G , sB11d

cz8 = v0 + u0
k2

msk2 + Z2d + XZ
−

k2

k2 + X2 − mXZ

3Fs1 + edv0 +
k2 + X2 + mXZ

msk2 + Z2d + XZ
u0G + Vz − vX.

sB12d

Substituting u0=cx−vZ and v0=cz−Vz+vX, we get Eqs.
(21) and (22).
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